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Chapter Three

Introduction to Quantum Theory of Solids
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This chapter aims to

quantify the energy levels of electrons in crystal lattices,

describe the statistical distribution of the very large number of electrons

on a crystal.
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3.1 Wave Equation for the Hydorgen Atom

3.1 Wave Equation for The Hydorgen Atom

The potential function in hydrogen
atom is due to the attraction be-
tween the +ve proton and the -ve
electron.
-) The potential function is V (r) /
1=r .

Figure: Potential function V (r) in hydorgen atom.

In spherical coordinates, the time-
independent wave function is de-
noted by 	(r ; �; �).

Figure: Spherical coordinates.

Separable of variables:

-) Let 	(r ; �; �) = R(r)�(�)�(�). Obtain three ordinary di�erential equations and
solve for R(r), �(�), and �(�).

-) Each di�erential equation will give a quantized solution and a quantum number.
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3.1 Wave Equation for the Hydorgen Atom

There are four quantum numbers:

n = 1; 2; 3; � � � ;
l = n � 1; n � 2; n � 3; � � � ;
m = � l ;�(l � 1); � � � ; 0 ;
s = � 1=2 :

-) s is the intrinsic angular momentum or spin
of the electron.
-) The set (n; l ;m; s) corresponds to a quan-
tum state which the electron may occupy.

Pauli exclusion principle: In a given atom,
molecule, or crystal, no two electrons may
occupy the same quantum state.

Example: The pdf function for the lowest
quantum set (n = 1; l = 0;m = 0) is

	(r) =
1p
�

1

a
3=2
0

exp(�r=a0) : (1)

-) a0 = 0:529 �A, it is the most probable dis-
tance from the nucleus to �nd the electron.

 

 

 

Figure: Pdfs for di�erent quantum sets in the hydrogen
atom.
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3.2 Allowed and Forbidden Energy Bands 3.2.1 Formation of Energy Bands

Formation of Energy Bands

When two hedrogen atoms are in close to each other, their wave functions overlap.

The discrete quantized energy level with n = 1 will split into two discrete energy
levels. Each electron has a distinct energy level.

 

Figure: (a) Pdf for a hedrogen atom. (b) overlapping pdfs for two adjacent hydrogen atoms. (c) The splitting of n = 1 state.

When more than two atoms become in close of each other, the quantized energy
level will split into a band of discrete energy levels. Each electron has a distinct
energy level.

-) r0 is the interatomic distance in
a crystal at which repulsion and at-
traction forces between atoms be-
come in equilibrium.

 

Figure: Splitting of an energy state into a band of allowed
energies.
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3.2 Allowed and Forbidden Energy Bands 3.2.1 Formation of Energy Bands

Formation of Energy Bands (cont.)

Consider now a system of atoms with more than one electrons per atom. Suppose
there are n = 3 discrete energy levels.

When atoms are becoming in close of each other, the outermost electrons in the
n = 3 energy level interact. This energy level will split into a band of allowed
energies.

If the atoms are getting closer, electrons in the n = 2 shell will interact and this
energy level will split into a band of allowed energies.

Similarly, the n = 1 shell may split if the atoms are getting further close.

When more than two atoms become in close
of each other, there would be allowed bands

of energies and forbidden bands of energies.

e.g., Assume a crystal with 1019 one-electron
atoms. The width of the allowed energy band
is 1 eV. The energy level of each electron
would be separated by 10�19.

 

Figure: Splitting of three energy states into allowed bands
of energies.
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3.3 Electrical Conduction in Solids

3.3.1 Energy Bands in Semiconductor

In an isolated Si atom, there are 10 electrons in n = 1 and n = 2, and they are tightly
bound to the nucleus. The other 4 electrons are at 3s and 3p and they are weakly bound.
Si forms covalent bonding with another 4 Si atoms to have 8 electrons at n = 3.
For N atoms of Si, the 3s and 3p split into three bands: the valence band, conduction
band, and forbidden band.
-) There are 4N quantum (energy) states in the valence band and 4N quantum states in
the conduction band. There are no states in the forbidden band.
-) With T = 0 K, the 4N states in the valence band is completely �lled with 4N electrons.
The 4N states in the conduction band is completely empty.
-) Eg : is the di�erence between the lower of conduction band and the upper of valence
band.
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(a) (b) (c) 

Figure: (a) Covalent bond in Si. (b) Schematic of an isolated Si atom. (c) The splitting of the 3s and 3p energy states
of Si into allowed and forbidden energy bands.

8 / 17



3.3 Electrical Conduction in Solids

3.3.2 Charge Carriers

For T > 0 K, valence electrons may gain enough thermal energy to break the
covalent bond and jump to the conduction band. These electrons represent the 1st
charge carrier in a semiconductor lattice.

The free valence electron lead to create a +ve charge of an empty state in the
valence band to keep the semiconductor neutrally charged.

-) These +ve charge empty state is called holes, and they represent the 2nd charge
carrier in the semiconductor.

-) It is common to conceive the holes a subatomic particles that has a charge
magnitude equal to the charge magnitude of the electron.

 

(a) (b) 

Figure: (a) Breaking of a covalent bond. (b) Genera-
tion of a negative and positive charge when breaking
the covalent bond.

 

Figure: Energy vs k for the valence and conduction
bands (a) T = 0 K. (b) T > 0.
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3.3 Electrical Conduction in Solids

3.3.3 Electron/Hole E�ective Mass

For a free electron in the space, classical mechanics match with quantum mechanics. A
force F acting on the free electron would be F = ma, m: free electron mass, a: acceleration.
For an electron moving in a lattice through a periodic potential function, there would an
e�ective mass m? that accounts for the particle mass and the e�ect of the internal forces.

Recall for a free electron, E = p2

2m
= }

2

2m
k2. The second derivative of E with respect to

(wrt) k is
1

}2

d2E

dk2
=

1

m
: (2)

Note both d2E=dK2 and m are positive and constant.
Approximate the energy near the bottom of conduction band by a parabola and the top of
the valence band by a parabola as well:

E � Ec = C1k
2 ;

E � Ev = �C2k
2 :

C1;C2 are positive quantities.

 

Figure: Parabolic approximation for (a) the conduction band and (b) the
valence band.
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3.3 Electrical Conduction in Solids

3.3.3 Electron/Hole E�ective Mass (cont.)

The 2nd derivative of E wrt k in the conduction band
can be written as

1

}2

d2E

dk2
= 2

C1

}2
; (3)

and in the valence band as

1

}2

d2E

dk2
= �2C2

}2
: (4)

 

Figure: E�ective electron and hole
mass.

From comparing (2) with (3) and (2) with (4), we conclude

1

}2

d2E

dk2
=

�
2
C1

}2
=

1

m?
n

�
;

1

}2

d2E

dk2
=

�
�2C2

}2
=

1

m?
p

�
:

-) m?
n is the electron e�ective mass and m?

p is the hole e�ective mass.

Valence electrons with -ve charge and +ve mass m?
n are the charge carriers in the

conduction band,

Holes with +ve charge and -ve mass m?
p are the charge carriers in the valence band.
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3.4 Density of Quantum States Function

3.4 Density of Quantum States Function

Question 1 : What is the total number of allowed quantum states in the conduction
and valence bands.

Consider a free electron with in�nite potential function in 3D.

V (x ; y ; z) =

(
0 ; 0 < x < L; 0 < y < L; 0 < z < L

1 ; otherwise.

Similar to the depicted in�nite potential well in chapter 2, de�ne the wave numbers
kx ; ky and kz in the directions x ; y and z

kx =
�

L
nx ; ky =

�

L
ny ; kz =

�

L
nz :

-) nx ; ny ; nz are integers. Only positive values of these parameters are considered.

-) These wave numbers form the wavevector k = (kx ; ky ; kz).

From the in�nite potential well example of chapter 2, we can conclude that

2mE

}2
= k2 = k2

x + k2
y + k2

z =
�
n2x + n2y + n2z

� �2

L2
:
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3.4 Density of Quantum States Function

The di�erential density of quantum states, gT (k)dk, in the k-space is

gT (k)dk = 2

�
1

8

�
4�k2dk�

�
L

�3 :

-) The factor 2 represents the two spin states of the electron allowed for each quantum
state,
-) The factor 1=8 refers to the quantum states with +ve values for kx ; ky and kz ,
-) The factor 4�k2dk is the di�erential volume,
-) The factor (�=L)3 is the volume of one quantum state.

Using 2mE
}2

= k2 and dk = 1
}

q
m
2E

dE , then

the di�erential density gT (k)dk becomes

gT (E)dE =
4�L3

h3
(2m)3=2

p
EdE :

 

Figure: (a) A 2D array of
allowed quantum states in
k-space. (b) The positive
one-eighth of the spherical
k-space.

The di�erential density per unit volume is

gT (E)dE =
4�

h3
(2m)3=2

p
EdE :
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3.4 Density of Quantum States Function

Extension to Semiconductors

At the bottom of the conduction band, we have

E � Ec =
}
2k2

2m?
n
:

-) Thus, gT (E)dE becomes

gc(E) =
4�(2m?

n )
3=2

h3
p
E � Ec : (5)

A the top of valence band, we have

Ev � E =
}
2k2

2m?
p
:

-) Thus, Thus, gT (E)dE becomes

gv (E) =
4�(2m?

p )
3=2

h3
p
Ev � E : (6)

There are no quantum states within the
energy band Ev < E < Ec .

 

Figure: The density of
energy states in the
conduction band and in
the valence band as a
function of energy. 14 / 17



3.4 Density of Quantum States Function

Example 3.1: Determine the total number of energy states in Si at T = 300

K

(a) Between Ec and Ec + kbT ,

(b) Between Ev and Ev � kbT .

kb is the Boltzmann constant and it is kb = 1:38� 10�23 J
K .

The electron e�ective mass is m?
n = 1:08m and the hole e�ective mass is

m?
p = 0:56m. The free electron mass is m = 9:11� 10�31 Kg.
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3.5 Fermi-Dirac Probability Distribution

3.5 Fermi-Dirac Probability Distribution

Question 2: How many electrons would existed in the quantum states.
-) Electrons would �ll the allowed energy levels in a random fashion.
Fermi-Dirac Probability Distribution, fF (E): This distribution gives the probability of an
electron to occupy an energy level E at temperature T :

fF (E) =
1

1 + exp
�

E�EF
kbT

� ; (7)

-) EF is called the Fermi energy ,
At T = 0 K, fF (E < EF ) = 1 and fF (E > EF ) = 0 from (7) . Then, all electrons will
occupy energy levels that are below EF .
For T > 0, the statistical distribution of electrons among the energy levels may change.
-) There is non-zero probability that some energy states above EF will be occupied.
-) Note fF (E = EF ) = 0:5. This means that an electron occupies EF with probability 0:5.
The function (1�fF (E)) represents the probability of an energy state being empty. 1�fF (E)
is symmetric with fF (E) around EF .

 

(a) (b) 

Figure: fF (E) vs energy for di�erent temperatures. (b) The probability functions fF (E) and (1� fF (E)). 16 / 17



3.5 Fermi-Dirac Probability Distribution

Example 3.2: Assume the Fermi energy level for a particular material is 0:35

eV above the valence band energy.

(a) Determine the probability of a state being empty of an electron at

Ev � kbT with T = 300 K,

(b) Calculate the temperature at which there is a 1% probability that the

state Ev � kbT will not contain an electron.

End of Chapter Three
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