CoE 211 ELECTRONIC DEVICE PHYSICS

Dr. Mohannad H. Al-Ali

Department of Computer Engineering
University of Basrah

Fall 2020

Chapter Three

Introduction to Quantum Theory of Solids

This chapter aims to

- quantify the energy levels of electrons in crystal lattices,
- describe the statistical distribution of the very large number of electrons on a crystal.

3.1 Wave Equation for The Hydorgen Atom

- The potential function in hydrogen atom is due to the attraction between the +ve proton and the -ve electron.
-) The potential function is $V(r) \propto$ $1 / r$.
- In spherical coordinates, the timeindependent wave function is denoted by $\Psi(r, \theta, \phi)$.

Figure: Potential function $V(r)$ in hydorgen atom.

Figure: Spherical coordinates.

- Separable of variables:
-) Let $\Psi(r, \theta, \phi)=R(r) \Theta(\theta) \Phi(\phi)$. Obtain three ordinary differential equations and solve for $R(r), \Theta(\theta)$, and $\Phi(\phi)$.
-) Each differential equation will give a quantized solution and a quantum number.
- There are four quantum numbers:

$$
\begin{aligned}
n & =1,2,3, \cdots \\
I & =n-1, n-2, n-3, \cdots \\
m & = \pm I, \pm(I-1), \cdots, 0 \\
s & = \pm 1 / 2
\end{aligned}
$$

-) s is the intrinsic angular momentum or spin of the electron.
-) The set (n, I, m, s) corresponds to a quantum state which the electron may occupy.

- Pauli exclusion principle: In a given atom, molecule, or crystal, no two electrons may occupy the same quantum state.
- Example: The pdf function for the lowest quantum set $(n=1, l=0, m=0)$ is

$$
\begin{equation*}
\Psi(r)=\frac{1}{\sqrt{\pi}} \frac{1}{a_{0}^{3 / 2}} \exp \left(-r / a_{0}\right) \tag{1}
\end{equation*}
$$

Figure: Pdfs for different quantum sets in the hydrogen atom.
-) $a_{0}=0.529 \AA$, it is the most probable distance from the nucleus to find the electron.

Formation of Energy Bands

- When two hedrogen atoms are in close to each other, their wave functions overlap.
- The discrete quantized energy level with $n=1$ will split into two discrete energy levels. Each electron has a distinct energy level.

Figure: (a) Pdf for a hedrogen atom. (b) overlapping pdfs for two adjacent hydrogen atoms. (c) The splitting of $n=1$ state.

- When more than two atoms become in close of each other, the quantized energy level will split into a band of discrete energy levels. Each electron has a distinct energy level.
-) r_{0} is the interatomic distance in a crystal at which repulsion and attraction forces between atoms become in equilibrium.

Figure: Splitting of an energy state into a band of allowed energies.

Formation of Energy Bands (cont.)

- Consider now a system of atoms with more than one electrons per atom. Suppose there are $n=3$ discrete energy levels.
- When atoms are becoming in close of each other, the outermost electrons in the $n=3$ energy level interact. This energy level will split into a band of allowed energies.
- If the atoms are getting closer, electrons in the $n=2$ shell will interact and this energy level will split into a band of allowed energies.
- Similarly, the $n=1$ shell may split if the atoms are getting further close.
- When more than two atoms become in close of each other, there would be allowed bands of energies and forbidden bands of energies.
- e.g., Assume a crystal with 10^{19} one-electron atoms. The width of the allowed energy band is 1 eV . The energy level of each electron would be separated by 10^{-19}.

Figure: Splitting of three energy states into allowed bands of energies.

3.3.1 Energy Bands in Semiconductor

- In an isolated Si atom, there are 10 electrons in $n=1$ and $n=2$, and they are tightly bound to the nucleus. The other 4 electrons are at $3 s$ and $3 p$ and they are weakly bound.
- Si forms covalent bonding with another 4 Si atoms to have 8 electrons at $n=3$.
- For N atoms of Si , the $3 s$ and $3 p$ split into three bands: the valence band, conduction band, and forbidden band.
-) There are $4 N$ quantum (energy) states in the valence band and $4 N$ quantum states in the conduction band. There are no states in the forbidden band.
-) With $T=0 \mathrm{~K}$, the 4 N states in the valence band is completely filled with 4 N electrons.
The $4 N$ states in the conduction band is completely empty.
-) E_{g} : is the difference between the lower of conduction band and the upper of valence band.

(a)

(b)

(c)

Figure: (a) Covalent bond in Si. (b) Schematic of an isolated Si atom. (c) The splitting of the $3 s$ and $3 p$ energy states of Si into allowed and forbidden energy bands.

3.3.2 Charge Carriers

- For $T>0 \mathrm{~K}$, valence electrons may gain enough thermal energy to break the covalent bond and jump to the conduction band. These electrons represent the 1 st charge carrier in a semiconductor lattice.
- The free valence electron lead to create a +ve charge of an empty state in the valence band to keep the semiconductor neutrally charged.
-) These + ve charge empty state is called holes, and they represent the 2nd charge carrier in the semiconductor.
-) It is common to conceive the holes a subatomic particles that has a charge magnitude equal to the charge magnitude of the electron.
 tion of a negative and positive charge when breaking the covalent bond.

Figure: Energy vs k for the valence and conduction bands (a) $T=0 \mathrm{~K}$. (b) $T>0$.

3.3.3 Electron/Hole Effective Mass

- For a free electron in the space, classical mechanics match with quantum mechanics. A force F acting on the free electron would be $F=m a, m$: free electron mass, a: acceleration.
- For an electron moving in a lattice through a periodic potential function, there would an effective mass m^{\star} that accounts for the particle mass and the effect of the internal forces.
- Recall for a free electron, $E=\frac{p^{2}}{2 m}=\frac{\hbar^{2}}{2 m} k^{2}$. The second derivative of E with respect to (wrt) k is

$$
\begin{equation*}
\frac{1}{\hbar^{2}} \frac{d^{2} E}{d k^{2}}=\frac{1}{m} \tag{2}
\end{equation*}
$$

Note both $d^{2} E / d K^{2}$ and m are positive and constant.

- Approximate the energy near the bottom of conduction band by a parabola and the top of the valence band by a parabola as well:

$$
\begin{aligned}
& E-E_{c}=C_{1} k^{2}, \\
& E-E_{v}=-C_{2} k^{2} .
\end{aligned}
$$

C_{1}, C_{2} are positive quantities.

Figure: Parabolic approximation for (a) the conduction band and (b) the valence band.

3.3.3 Electron/Hole Effective Mass (cont.)

- The 2 nd derivative of E wrt k in the conduction band can be written as

$$
\begin{equation*}
\frac{1}{\hbar^{2}} \frac{d^{2} E}{d k^{2}}=2 \frac{C_{1}}{\hbar^{2}} \tag{3}
\end{equation*}
$$

	$\boldsymbol{m}_{n}^{*} / \boldsymbol{m}_{\boldsymbol{0}}$	$\boldsymbol{m}_{p}^{*} / \boldsymbol{m}_{\boldsymbol{0}}$
Silicon	1.08	0.56
Gallium arsenide	0.067	0.48
Germanium	0.55	0.37

and in the valence band as

$$
\begin{equation*}
\frac{1}{\hbar^{2}} \frac{d^{2} E}{d k^{2}}=-2 \frac{C_{2}}{\hbar^{2}} \tag{4}
\end{equation*}
$$

- From comparing (2) with (3) and (2) with (4), we conclude

$$
\begin{aligned}
\frac{1}{\hbar^{2}} \frac{d^{2} E}{d k^{2}} & =\left(2 \frac{C_{1}}{\hbar^{2}}=\frac{1}{m_{n}^{\star}}\right) \\
\frac{1}{\hbar^{2}} \frac{d^{2} E}{d k^{2}} & =\left(-2 \frac{C_{2}}{\hbar^{2}}=\frac{1}{m_{p}^{\star}}\right)
\end{aligned}
$$

-) m_{n}^{\star} is the electron effective mass and m_{p}^{\star} is the hole effective mass.

- Valence electrons with -ve charge and +ve mass m_{n}^{\star} are the charge carriers in the conduction band,
- Holes with + ve charge and -ve mass m_{p}^{\star} are the charge carriers in the valence band.

3.4 Density of Quantum States Function

- Question 1: What is the total number of allowed quantum states in the conduction and valence bands.
- Consider a free electron with infinite potential function in 3D.

$$
V(x, y, z)= \begin{cases}0, & 0<x<L, 0<y<L, 0<z<L \\ \infty, & \text { otherwise }\end{cases}
$$

- Similar to the depicted infinite potential well in chapter 2 , define the wave numbers k_{x}, k_{y} and k_{z} in the directions x, y and z

$$
k_{x}=\frac{\pi}{L} n_{x}, k_{y}=\frac{\pi}{L} n_{y}, k_{z}=\frac{\pi}{L} n_{z} .
$$

-) n_{x}, n_{y}, n_{z} are integers. Only positive values of these parameters are considered.
-) These wave numbers form the wavevector $\mathbf{k}=\left(k_{x}, k_{y}, k_{z}\right)$.

- From the infinite potential well example of chapter 2, we can conclude that

$$
\frac{2 m E}{\hbar^{2}}=k^{2}=k_{x}^{2}+k_{y}^{2}+k_{z}^{2}=\left(n_{x}^{2}+n_{y}^{2}+n_{z}^{2}\right) \frac{\pi^{2}}{L^{2}} .
$$

- The differential density of quantum states, $g_{T}(k) d k$, in the k-space is

$$
g_{T}(k) d k=2\left(\frac{1}{8}\right) \frac{4 \pi k^{2} d k}{\left(\frac{\pi}{L}\right)^{3}} .
$$

-) The factor 2 represents the two spin states of the electron allowed for each quantum state,
-) The factor $1 / 8$ refers to the quantum states with + ve values for k_{x}, k_{y} and k_{z},
-) The factor $4 \pi k^{2} d k$ is the differential volume,
-) The factor $(\pi / L)^{3}$ is the volume of one quantum state.

- Using $\frac{2 m E}{\hbar^{2}}=k^{2}$ and $d k=\frac{1}{\hbar} \sqrt{\frac{m}{2 E}} d E$, then the differential density $g_{T}(k) d k$ becomes

$$
g_{T}(E) d E=\frac{4 \pi L^{3}}{h^{3}}(2 m)^{3 / 2} \sqrt{E} d E
$$

(a)

(b)

Figure: (a) A 2D array of allowed quantum states in k-space. (b) The positive one-eighth of the spherical k-space.

- The differential density per unit volume is

$$
g_{T}(E) d E=\frac{4 \pi}{h^{3}}(2 m)^{3 / 2} \sqrt{E} d E
$$

Extension to Semiconductors

- At the bottom of the conduction band, we have

$$
E-E_{c}=\frac{\hbar^{2} k^{2}}{2 m_{n}^{\star}}
$$

-) Thus, $g_{T}(E) d E$ becomes

$$
\begin{equation*}
g_{c}(E)=\frac{4 \pi\left(2 m_{n}^{\star}\right)^{3 / 2}}{h^{3}} \sqrt{E-E_{c}} \tag{5}
\end{equation*}
$$

- A the top of valence band, we have

$$
E_{v}-E=\frac{\hbar^{2} k^{2}}{2 m_{\rho}^{\star}}
$$

-) Thus, Thus, $g_{T}(E) d E$ becomes

$$
\begin{equation*}
g_{v}(E)=\frac{4 \pi\left(2 m_{p}^{\star}\right)^{3 / 2}}{h^{3}} \sqrt{E_{v}-E} \tag{6}
\end{equation*}
$$

- There are no quantum states within the energy band $E_{v}<E<E_{c}$.

Figure: The density of energy states in the conduction band and in the valence band as a function of energy.

Example 3.1: Determine the total number of energy states in Si at $T=300$ K
(a) Between E_{c} and $E_{c}+k_{b} T$,
(b) Between E_{v} and $E_{v}-k_{b} T$.
k_{b} is the Boltzmann constant and it is $k_{b}=1.38 \times 10^{-23} \frac{\mathrm{~J}}{\mathrm{~K}}$.
The electron effective mass is $m_{n}^{\star}=1.08 \mathrm{~m}$ and the hole effective mass is $m_{p}^{\star}=0.56 \mathrm{~m}$. The free electron mass is $m=9.11 \times 10^{-31} \mathrm{Kg}$.

3.5 Fermi-Dirac Probability Distribution

- Question 2: How many electrons would existed in the quantum states.
-) Electrons would fill the allowed energy levels in a random fashion.
- Fermi-Dirac Probability Distribution, $f_{F}(E)$: This distribution gives the probability of an electron to occupy an energy level E at temperature T :

$$
\begin{equation*}
f_{F}(E)=\frac{1}{1+\exp \left(\frac{E-E_{F}}{k_{b} T}\right)}, \tag{7}
\end{equation*}
$$

-) E_{F} is called the Fermi energy,

- At $T=0 \mathrm{~K}, f_{F}\left(E<E_{F}\right)=1$ and $f_{F}\left(E>E_{F}\right)=0$ from (7). Then, all electrons will occupy energy levels that are below E_{F}.
- For $T>0$, the statistical distribution of electrons among the energy levels may change.
-) There is non-zero probability that some energy states above E_{F} will be occupied.
-) Note $f_{F}\left(E=E_{F}\right)=0.5$. This means that an electron occupies E_{F} with probability 0.5.
- The function $\left(1-f_{F}(E)\right)$ represents the probability of an energy state being empty. $1-f_{F}(E)$ is symmetric with $f_{F}(E)$ around E_{F}.

(a)

(b)

Figure: $f_{F}(E)$ vs energy for different temperatures. (b) The probability functions $f_{F}(E)$ and $\left(1-f_{F}(E)\right)$.

Example 3.2: Assume the Fermi energy level for a particular material is 0.35 eV above the valence band energy.
(a) Determine the probability of a state being empty of an electron at $E_{v}-k_{b} T$ with $T=300 \mathrm{~K}$,
(b) Calculate the temperature at which there is a 1% probability that the state $E_{v}-k_{b} T$ will not contain an electron.

End of Chapter Three

