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Chapter Three

Introduction to Quantum Theory of Solids
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This chapter aims to
@ quantify the energy levels of electrons in crystal lattices,

o describe the statistical distribution of the very large number of electrons
on a crystal.
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3.1 Wave Equation for The Hydorgen Atom
@ The potential function in hydrogen

atom is due to the attraction be-
tween the +ve proton and the -ve

electron.
-) The pOtential function is V(r) X Figure: Potential function V/(r) in hydorgen atom.
1/r. ,
#(60,9)
Byr,
@ In spherical coordinates, the time- i y
independent wave function is de- //"7“
noted by W(r,8, ¢). X

Figure: Spherical coordinates.

@ Separable of variables:
-) Let W(r,0,¢) = R(r)©(0)®(¢). Obtain three ordinary differential equations and
solve for R(r), ©(6), and ®(¢).

-) Each differential equation will give a quantized solution and a quantum number.
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3.1 Wave Equation for the Hydorgen Atom

@ There are four quantum numbers:

n= 172537"' 3
05
=n—-1,n—-2n—-3,---, v
0.3 Ground state
m= £/, +£(/-1),---,0, oot \ =8
s= + 1/2 01 Dashed line : Radius by Bohr's quantum theory
-) s is the intrinsic angular momentum or spin o1 (e
of the electron. - TR
-) The set (n, I, m, s) corresponds to a quan- ot =z
tum state which the electron may occupy. ° s o s
n=3
@ Pauli exclusion principle: In a given atom, O;M
15 25
molecule, or crystal, no two electrons may 5 °o o
) I=1
occupy the same quantum state. 0 T
@ Example: The pdf function for the lowest u i =3
. 0 1L 1l L J
quantum set (n=1,/=0,m=0) is w e meE R
o

Figure: Pdfs for different quantum sets in the hydrogen

\IJ(r) — %#exp(—r/ao) . (1) atom.

-) a0 = 0.529 A, it is the most probable dis-
tance from the nucleus to find the electron.
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EPN I IEL T RSN SEL G 3.2.1 Formation of Energy Bands

Formation of Energy Bands

@ When two hedrogen atoms are in close to each other, their wave functions overlap.
@ The discrete quantized energy level with n = 1 will split into two discrete energy

levels. Each electron has a distinct energy level.
4

Figure: (a) Pdf for a hedrogen atom. (b) overlapping pdfs for two adjacent hydrogen atoms. (c) The splitting of n = 1 state.

@ When more than two atoms become in close of each other, the quantized energy
level will split into a band of discrete energy levels. Each electron has a distinct

energy level.

-) ro is the interatomic distance in
a crystal at which repulsion and at-
traction forces between atoms be-

come in equ”lb”um' Figure: Splitting of an energy state into a band of allowed
energies.

Electron energy —»

I
I
I
7o Interatomic distance —=
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EPN I IEL T RSN SEL G 3.2.1 Formation of Energy Bands

Formation of Energy Bands (cont.)

@ Consider now a system of atoms with more than one electrons per atom. Suppose
there are n = 3 discrete energy levels.

@ When atoms are becoming in close of each other, the outermost electrons in the
n = 3 energy level interact. This energy level will split into a band of allowed
energies.

@ If the atoms are getting closer, electrons in the n = 2 shell will interact and this
energy level will split into a band of allowed energies.

@ Similarly, the n =1 shell may split if the atoms are getting further close.

@ When more than two atoms become in close
of each other, there would be allowed bands
of energies and forbidden bands of energies.

@ e.g., Assume a crystal with 10' one-electron
atoms. The width of the allowed energy band
is 1 eV. The energy level of each electron
would be separated by 1071

Electron energy —#—

o Interatomic distance —#=

Figure: Splitting of three energy states into allowed bands
of energies.
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3.3 Electrical Conduction in Solids

3.3.1 Energy Bands in Semiconductor

@ In an isolated Si atom, there are 10 electrons in n = 1 and n = 2, and they are tightly
bound to the nucleus. The other 4 electrons are at 3s and 3p and they are weakly bound.
@ Si forms covalent bonding with another 4 Si atoms to have 8 electrons at n = 3.
@ For N atoms of Si, the 3s and 3p split into three bands: the valence band, conduction
band, and forbidden band.
-) There are 4N quantum (energy) states in the valence band and 4N quantum states in
the conduction band. There are no states in the forbidden band.
-) With T = 0 K, the 4N states in the valence band is completely filled with 4V electrons.
The 4N states in the conduction band is completely empty.
-) Eg: is the difference between the lower of conduction band and the upper of valence
band.

" ] i i

Six allowed levels
at same energy

Electron energy ——

Two allowed levels
at same energy

(a) (b) (c)

Figure: (a) Covalent bond in Si. (b) Schematic of an isolated Si atom. (c) The splitting of the 3s and 3p energy states

of Si into allowed and forbidden energy bands.
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3.3.2 Charge Carriers

@ For T > 0 K, valence electrons may gain enough thermal energy to break the
covalent bond and jump to the conduction band. These electrons represent the 1st
charge carrier in a semiconductor lattice.

@ The free valence electron lead to create a +ve charge of an empty state in the
valence band to keep the semiconductor neutrally charged.

-) These +ve charge empty state is called holes, and they represent the 2nd charge
carrier in the semiconductor.

-) It is common to conceive the holes a subatomic particles that has a charge
magnitude equal to the charge magnitude of the electron.

1 E 1

) )

a) (b

Figure: (a) Breaking of a covalent bond. (b) Genera- w '
tion of a negative and positive charge when breaking

the covalent bond. Figure: Energy vs k for the valence and conduction

bands (a) T =0 K. (b) T > 0.
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3.3.3 Electron/Hole Effective Mass

@ For a free electron in the space, classical mechanics match with quantum mechanics. A
force F acting on the free electron would be F = ma, m: free electron mass, a: acceleration.
@ For an electron moving in a lattice through a periodic potential function, there would an
effective mass m* that accounts for the particle mass and the effect of the internal forces.

2
@ Recall for a free electron, E = f—m = %kz. The second derivative of E with respect to
(wrt) k is
1 d?’E 1
o -~ (2)
K2 dk? m

Note both d?E/dK? and m are positive and constant.
@ Approximate the energy near the bottom of conduction band by a parabola and the top of
the valence band by a parabola as well:

Parabolic
approximation

E— E. = GiK?,
E—E, =—Gk?.

C1, Gy are positive quantities.

Parabolic
approximation

Figure: Parabolic approximation for (a) the conduction band and (b) the
valence band. 10/17



3.3 Electrical Conduction in Solids

3.3.3 Electron/Hole Effective Mass (cont.)

@ The 2nd derivative of E wrt k in the conduction band

can be written as

mj[my mj [y

2 Silicon 1.08 0.56
lE — 2& (3) Gallium arsenide 0.067 0.48
h2 dk2 B2’ Germanium 0.55 0.37

and in the valence band as

1 d°E G
e = )

Figure: Effective electron and hole
mass.

@ From comparing (2) with (3) and (2) with (4), we conclude

1d#E_ (G _ 1
n2dk> — \"m " my )’

1dE_(,G _ 1
ndke -\ my)

-) m; is the electron effective mass and mj is the hole effective mass.

@ Valence electrons with -ve charge and +ve mass mj, are the charge carriers in the
conduction band,
@ Holes with +ve charge and -ve mass m; are the charge carriers in the valence band.
11/17



3.4 Density of Quantum States Function

@ Question 1 : What is the total number of allowed quantum states in the conduction
and valence bands.

@ Consider a free electron with infinite potential function in 3D.

0, 0<x<LO<y<LO<z<lL
oo, otherwise.

Vix.y,z) = {

@ Similar to the depicted infinite potential well in chapter 2, define the wave numbers
kx, k, and k; in the directions x, y and z

s ™ ™
kX = an,ky = Zny,kz = an.

-) ny, ny, n; are integers. Only positive values of these parameters are considered.
-) These wave numbers form the wavevector k = (ky, ky, k-).

@ From the infinite potential well example of chapter 2, we can conclude that

2mE 2 2 2 2 2 2 2 n?
i =k =kx+ky+kZ=(nX+ny+nZ)p.
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3.4 Density of Quantum States Function

@ The differential density of quantum states, g7 (k)dk, in the k-space is
1\ 4nk%dk
Kdk=21[=
er(kyak=2 ;) oL
L

-) The factor 2 represents the two spin states of the electron allowed for each quantum

state,
-) The factor 1/8 refers to the quantum states with +ve values for kx, k, and k;,

-) The factor 47k%dk is the differential volume,
-) The factor (w/L)3 is the volume of one quantum state.

@ Using 27E = k? and dk = &,/ 5% dE, then
the differential density g7(k)dk becomes

(b)

473 3/2
gr(E)dE = —5—(2m)*/>*VEdE .
h Figure: (a) A 2D array of
allowed quantum states in
k-space. (b) The positive
one-eighth of the spherical
k-space.

@ The differential density per unit volume is

4
gr(E)dE = "= (2m)*/>VEdE .
h3 13/17



3.4 Density of Quantum States Function
Extension to Semiconductors

@ At the bottom of the conduction band, we have

Kk
E—E = .
2mp
-) Thus, gr(E)dE becomes
4m(2m;)*/?
g(E) = %\/5 —E..

@ A the top of valence band, we have

s

E,—E= .
2m}

-) Thus, Thus, gr(E)dE becomes
4n(2m*)3/?
s(6)= " Ve —E. (o)

@ There are no quantum states within the
energy band E, < E < E..

G(E) =t

Figure: The density of
energy states in the
conduction band and in
the valence band as a
function of energy.
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Example 3.1: Determine the total number of energy states in Siat T = 300
K

(a) Between E. and E. + kp T,

(b) Between E, and E, — k, T.

kp is the Boltzmann constant and it is k, = 1.38 x 10723 L.

The electron effective mass is m;; = 1.08m and the hole effective mass is

my = 0.56m. The free electron mass is m = 9.11 x 103! Kg.
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3.5 Fermi-Dirac Probability Distribution

3.5 Fermi-Dirac Probability Distribution

Question 2: How many electrons would existed in the quantum states.
-) Electrons would fill the allowed energy levels in a random fashion.

Fermi-Dirac Probability Distribution, fg(E): This distribution gives the probability of an
electron to occupy an energy level E at temperature T:
1
fr(E) = T (E—Er\° (M)
L+ep ( kp T )

-) Ef is called the Fermi energy,

At T =0K, fr(E < EF) =1 and fr(E > EF) = 0 from (7) . Then, all electrons will
occupy energy levels that are below Ef.

For T > 0, the statistical distribution of electrons among the energy levels may change.
-) There is non-zero probability that some energy states above Er will be occupied.

-) Note fe(E = EF) = 0.5. This means that an electron occupies Ef with probability 0.5.
The function (1—fg(E)) represents the probability of an energy state being empty. 1—f¢(E)
is symmetric with fe(E) around Ef.

(a) (b)

Figure: fr(E) vs energy for different temperatures. (b) The probability functions fg(E) and (1 — f£(E)). 16 /17



3.5 Fermi-Dirac Probability Distribution

Example 3.2: Assume the Fermi energy level for a particular material is 0.35
eV above the valence band energy.

(a) Determine the probability of a state being empty of an electron at
E, — kp T with T =300 K,

(b) Calculate the temperature at which there is a 1% probability that the
state E, — kp T will not contain an electron.

End of Chapter Three
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